Drug discovery research for small molecule protein-protein interaction (PPI) modulators with unique *in silico* drug design strategy

1

January 30th, 2013

Hirotsugu KOMATSU, Ph.D. CSO and Director, R&D and BD division Interprotein Corporation

Interprotein Interprotein's targets for small molecule drug discovery

Points of today's talk

1. In-house PPI inhibitor programs

- 1.1. Small molecule IL-6 inhibitor
- **1.2. Small molecule VEGF inhibitor**
- 2. Collaborative research for new drug targets with unique *in silico* molecular design strategy, INTENDD (INTerprotein's Engine for New Drug Design)
 - 2.1. Identification of small molecule binding site and *in silico* screening by SBSG (<u>Structure-Based Scaffold</u> <u>Generation</u>)
 - 2.2. Strategic evaluation of small molecule PPI inhibitors, especially cytokine-receptor interaction regulators

Two concepts for cytokine-cytokine receptor interaction inhibitors

Binding to cytokine or cytokine receptor	Specific binding	Specific binding
Inhibition of cytokine-cytokine receptor binding	<i>Partial</i> inhibition	<i>Full</i> inhibition
Inhibition of cellular signaling (upper stream)	Full inhibition	Full inhibition
	Partial-antagonist type	Full-antagonist type

Interprotein Image of inhibition of cytokine-cytokine receptor interaction by small molecule compounds

Interprotein Two types of small molecule IL-6 inhibitors

Partial-antagonist type compound

Full-antagonist type compound

Interprotein Small molecule IL-6 inhibitor (IL-6/IL-6R interaction inhibitor)

<Concept>

Replacement/dose reduction of tocilizumab (Actemra), and further expansion of anti-IL-6 therapies for tocilizumab-approved diseases and other autoimmune/ inflammatory diseases

<Present status>

- Under synthesis and evaluation of compounds for optimization.
- Compound X shows good in vivo PK profile in mice (30 mg/kg, p.o.; F value, 26%).

Parameters tested	Criteria	Compound X	Positive compounds
clogP	2.0 <clogp<6.0< td=""><th>Clear</th><td>-</td></clogp<6.0<>	Clear	-
tPSA (A ²)	<140	Clear	-
pSTAT3 (IC ₅₀ , µmol/L)	<50	Clear (<1)	39/136 (28.7%)
IC ₅₀ ratio vs. tocilizumab	<1/1000	Clear (1/50-1/200)	-
Binding to IL-6 (SRP, RU)	>5	Clear	70/88 (79.5%)
Inhibition of IL-6/IL-6R binding (SPR, % inhi.)	>5	Clear	18/122 (14.8%)
Interaction with IL-6 (¹⁵ N- NMR)	Chemical shift change at proposed binding site	Clear (change at 7/10 residues)	34/54 (62.9%)

Interprotein Small molecule VEGF inhibitor (VEGF/VEGFR interaction inhibitor)

<Concept>

◆ Replacement and/or dose reduction of bevacizumab (Avastin), and further penetration of anti-VEGF therapies (acquisition of indications for which bevacizumab has been not approved; diffusion of combination therapy with small molecule VEGF inhibitor and current standard chemotherapies → for distinction from tyrosine kinase inhibitors, TKIs)

<Present status>

- Under synthesis and evaluation of compounds aiming for lead optimization.
- Compound Y shows great in vivo efficacy in mouse xenograft model (40 mg/kg, p.o.).

Parameters tested	Criteria	Compound Y
VEGF-stimulated HUVEC growth	IC ₅₀ < 100 nM	Clear
Selectivity	10-fold IC ₅₀ or more for: EGM2-stimulated HUVEC growth LS174T/fibroblast growth	Clear
In vivo efficacy	Comparable to bevacizumab	Clear
Binding to VEGF (SRP)	> 5 RU	Under assessment
Inhibition of VEGF/VEGFR binding (SPR)	> 5%	Under assessment
Interaction with VEGF (¹⁵ N-NMR)	Chemical shift change at proposed binding site	Under assessment

Interprotein Pharmacological profile of Small molecule VEGF inhibitor (Preceding compound, Compound Y)

LS174T inoculation: s.c.

Tumor volume at the start of administration: 276 mm³

LS174T-inoculated xenograft model

Unique SBDD strategy, INTENDD

Essential Principle for Drug Design: Shape" and "Color" have to be matched ("Shape" means 3D surface structure, and "color" means H-bond and so on)

Components of INTENDD (<u>INT</u>erprotein's <u>Engine for New Drug Design</u>)

- 1) Identification of target cavity [1 month] →
- 2) In silico screening by <u>Structure-Based Scaffold Generation (SBSG)</u> method (proposal of around 200 compounds) [3 months]

(3D models can be produced easily in 2 hours)

Value & Advantage of INTENDD

- A) Discover real hits compounds in high-ranked 200 comp.
- B) Create new & druggable scaffolds with wide diversity at one try (also applicable to back-up compounds)
- C) Acceptable structures for medicinal chemists
- D) Proven MOA by SPR, NMR, X-ray, HDx in many projects
- E) Not restricted by types of targets (PPI, enzyme, receptor and so on)
- F) Applicable not only to hit identification but also lead generation and optimization

Identification of Target Cavity

Procedure of SBSG method

SBSG: <u>Structure-Based</u> <u>Scaffold</u> <u>Generation</u>

Commercially available chemical libraries (ca. 10 millions)

i. Search of ring positions at the cavity

ii. Formation of ligand skeletons (ca.50 structures manually) iii.Search of skeletons in available compound data bases

- iv.Collision check with protein atoms
- v. Selection of promising compounds by clustering and filtering by binding structure-based mechanisms

Interprotein Comparison between SBSG and current methods

ltem	SBSG	Docking
Coverage of search space	Complete with novel skeletons	Limited to data base cmps.
Examined compounds	Ca. 10 ⁶ data base cmps.	Ca. 10 ⁶ data base cmps.
Major driving force in search	Binding structure-based mechanism	Calculated binding energy-based
Scoring of cmps.	Filtering on assumed mechanism	Calculated binding energy
Time frame for design	1 month x 3 iterations	1 – 3 months
Required number of cmps. to obtain hit cmps. in wet screening systems	 200 – 300 Low purchase cost of cmps. Easily assayed by manual screening system (no need for HTS) 	A few thousands or more
Number of hits & diversity	10 - 30 with broad diversity	0 – 5 with poor diversity

Interprotein Example of collaborative research

- the case where information on X-ray crystal structure of target protein is existing -

Functions and expertise of Interprotein

1. Proposal of hit candidates by INTENDD

- Real 3D model-based identification of binding site
- In silico screening by SBSG method

2. Synthesis of compounds

Know-how of lead generation/optimization of small molecule PPI inhibitors

3. Evaluation of compounds

- Know-how of strategic assessment of small molecule PPI inhibitors
- Close collaboration with experts of protein/drug discovery research (NB Health Laboratory, Kyoto Sangyo Univ., Osaka Univ., MARUWA Foods & Biosciences, Japan Aerospace Exploration Agency (JAXA), RIKEN, etc.)

Interprotein Strategic evaluation of small molecule PPI inhibitors

Interprotein Outlines of R&D activities of Interprotein

1. In-house programs (-> searching for license/collaboration partners)

Program	Stage	Mechanism of action
VEGF inhibitor	Lead optimization	Inhibition of VEGF/VEGFR2 interaction; not TKI
IL-6 inhibitor	Lead optimization	Inhibition of IL-6/IL-6R interaction
Tubulin inhibitor	Lead optimization	Inhibition of tubulin polymerization
Notch 1 inhibitor	Lead optimization	Inhibition of NICD/RBP-Jk/MAM interaction
IgE inhibitor	Lead generation	Inhibition of IgE/FceRI interaction

2. Drug discovery research for new targets

(-> searching for collaborative research partners)

Torract	Main role		
larget	Interprotein	Pharmaceutical Company	
Proposed by the Partners PPIs/non-PPIs inhibitors/agonists	In silico screening by INTENDD (support of wet screening)	Wet screening by protein/cell-based assay systems	
Ajinomoto Pharmaceuticals Co. Ltd. Takeda Pharmaceutical Co. Ltd., etc.			

Interprotein The result of collaborative research with Takeda Pharmaceutical Company Limited - News by BioCentury Publications Inc. -

Published on Monday, December 3, 2012

Interprotein Corp., Osaka, Japan Takeda Pharmaceutical Co. Ltd. (Tokyo:4502), Osaka, Japan

Interprotein said partner Takeda will continue to evaluate small molecule inhibitors of protein-protein interactions under a 2011 deal after **about 11% of the compounds tested were found to bind to the target protein**. Interprotein said it is "generally recognized" that hit rates against protein targets through computational drug design are "well below 11%." The companies partnered last December to develop the compounds using Interprotein's Engine for New Drug Design (INTENDD) technology. The companies could not be reached for comment (see BioCentury, Jan. 9).

Partnering contact

We are searching alliance partners for:

- **1. Small molecule VEGF inhibitor**
- 2. Small molecule IL-6 inhibitor
- 3. Small molecule Notch1 inhibitor
- 4. Small molecule IgE inhibitor
- 5. Tubulin polymerization inhibitor

6. Inhibitors/agonists for new drug targets (PPI/non-PPI)

License and/or research collaboration

Collaborative research

Contribution to raising the productivity of drug discovery research for all types of drug targets with 3D structure information

Hirotsugu KOMATSU, Ph.D.

CSO and Director, R&D and BD Division, Interprotein Corporation E-mail: komatsu@interprotein.com