A New Peptide Drug Modality; Helix-Loop-Helix Technology

Interprotein®

Interprotein Corporation

Interprotein[®]

Interprotein Corporation

- Location: Osaka, Japan
- Year Established: 2001
- CEO & President: Masato Hosoda
- <u>www.interprotein.com</u>
- 🔰 @interprotein

Platform Technology

- Expertise: Development of PPI (protein-protein interaction) modulators with small molecules or peptide
- Business Model:
 - Strategic Alliance: Target discovery and Lead optimization
 - Licensing of a pipeline

 Conformationally-constrained Helix-Loop-Helix (HLH) peptide platform technology

High affinity

- □ Non-immunogenic
- Resistant to proteolysis
- Bi-specific

Interprotein[®]

Advantageous Property of Helix-Loop-Helix Peptide in Drug Discovery

Affinity	Selectivity	Stability	Antigenicity	Applicability	
High binding affinity to the target protein with K _D values of double-digit pM	High selectivity for the target protein	High stability in serum (half life of cyclized peptide: more than 15 days)	Low risk for antigenicity (using only natural amino acids)	Broad applicability (α-helix-irrelevant, intracellular and extracellular PPIs)	
$K_{\rm D} = 34 \text{ pM}$	SPR spectra 50 40 0 PepBde = 500 nM (UsaCore I 100)	Stability in mouse serum 120 100 100 100 100 100 100 100	Titration Curve i microAb-KLH microAb microAb microAb microAb microAb microAb microAb microAb microAb microAb microAb microAb microAb microAb microAb microAb microAb	interaction p53 ELISA ELISA IC50 = 36 nM KD = 10 nM KD = 10 nM M M M M M M M	

The largest-ever library size ensures production of high affinity binders against any targets

Interprotein[®]

Screening phage display libraries with biopanning

Enrichment of Streptavidin (SA)-binding phages by biopanning (model experiment)

Ex. The results of 3-round biopanning against Streptavidin

				Dynabe	eads SA	Dynabea	ds Protein A
Panning	Concentration of	Incubation	Washing	Input phage	Output	Input	Output phage
round	biotin-streptavidin	time	condition	input phage	phage	phage	Output phage
1	1000 nM	Overnight at 4 °C	PBST 3 times	4.50E+11	8.60E+04	-	-
2	1000 nM	2 hr. on ice	PBST 3 times	7.80E+11	5.50E+05	-	-
3	100 nM	1 hr. on ice	PBST 10 times	4.90E+11	4.70E+06	4.90E+11	8.50E+05

Mixed libraries :

Mixture of CHR, LR, and CHLR was used for screening of Streptavidin (SA)-binding helix-loophelix peptides. In Round 3, dynabeads Protein A was used as a negative control.

From Round 1 to 3, enrichments of output phage shows >50-fold. In Round 3, as compared with control dynabeads Protein A (which cannot capture the biotinylated SA), more than 5-fold of phages were captured from the target protein by using dynabeads SA.

Interprotein[®]

Identification of Streptavidin-binding **Consensus Sequence**

Streptavidin-binding peptide sequences isolated from mixed libraries

clone No.	amino acid sequence of peptides	frequency
kato-r4-01	AELAALEAELAALEGC <mark>hpq</mark> ggklcllkaklptlka	2
kato-r4-04	CAAELAALEAELAALEGR <mark>HPQ</mark> FPPPHGKLVGLKNKLCQLKKAC	2
kato-r4-07	CAAELAALEAELADHHYD <mark>HPQ</mark> DGKL*MLKWKLRELKVAC	1
kato-r4-10	CAAELAALEAELAALEGPH <mark>HPQ</mark> DPRSGKLHRLKKKLEDLKLAC	1
kato-r4-12	CAAELAALEAELAALEGY <mark>hpq</mark> vppphgklqmlkgklrqlkeac	1
kato-r4-02	CAAELAALEAELAALEGQ*WEAELRAGKLAALKAKLAALKAC	1
kato-r4-08	AELAALEAELAALEGNVTMYGKLPLLKHKLTTLKA	1
kato-r4-09	AELAALEAELAALEGNQGRGGKLQPLKQKLGTLKA	1

Library	Size
CHLR	5.1 X 10 ⁸ transformants
LR	4.8 X 10 ⁸ transformants
CHR	1.0 X 10 ⁸ transformants
Total	1.1 X 10 ⁹ transformants

Using Streptavidin as the target, after 4 rounds of enrichment/amplification, it was confirmed that the consensus sequence for Streptavidin-binding peptides with the HPQ motif was most strongly conserved.

The streptavidin-bound crystal structures of disulfide-bridge cyclic peptides cyclo-Ac-[CHPQGPPC]-NH2 7

In house project (Helix-loop-helix peptides)

We are also developing a new modality, helix-loop-helix peptide for developing PPI inhibitors against following targets. <u>http://www.interprotein.com/HLHP.html</u>

• Oncology, Hematology

Project	Stage	Note
Tumor peptide	Lead optimization	We have identified a peptide that binds to tumor angiogenesis factor with pM found that the peptide is localized in a tumor, which releases a lot of the tumor factor, in a mouse model . We anticipate that this peptide can also be developed drug conjugates (PDC).
P53-MDM2, P53-FOXO4	Hit validation	We have identified a peptide that blocks p53-MDM2 interaction and thereby are now examining a correlation of the <i>in vitro</i> efficacy and peptide penetration We are also going to isolate p53-FOXO4 blockers for aging research.
TIM-3 inhibitor	Hit identification(≈lea generation)	Interprotein has identified candidates through phage-display and validated the to TIM-3 by SPR. The peptide without an epitope-tag has been synthesized and for its binding on Tim-3. We have recently isolated the peptide that can inhibit 9/TIM-3 interaction.
NKG2A/HLA- E/CD94	Discovery	We have designed peptides that are expected to bind NKG2A and inhibit NKG2A HLA-E/CD94.
KIR/HLA-C inhibitor	Discovery	We have designed peptides that are expected to bind KIR and inhibit KIR binding
IL-6	Discovery	We have isolates peptides that bind to TIM-3 by SPR through phage-display